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Abstract — We show that, under the Kirchhoff hypothesis, Taber’s recent theory for the simultaneous
axisymmetric bending and torsion of shells of revolution undergeing large strains can be simplified
considerably. In general, his 33 equations can be reduced to four first-order ordinary differential
equations and two algebraic equations for six unknowns. For small strains, the equations can be
reduced further to two coupled nonlinear equations for the meridional angle of rotation and u stress
function, as in Reissner's theory of torsionless, axisymmetric deformation.

1. INTRODUCTION

Taber (1988) has developed a theory of circumferentially complete, rubber-like (isotropic,
nonlincarly clastic) shells of revolution under static surface and end loads that are inde-
pendent of the polar angle. Introducing onc-dimensional extensional, bending, and trans-
verse sheiring strains, Taber derived a set of 33 ficld equations for 33 unknowns. In the
present paper, we show that under the reduced Kirchhofl hypothesis — which assumes that
the two-dimensional transverse shear strain-twist vector (Libai and Simmonds, 1983, p.
314) vanishes ——the field cquations can be reduced to a coupled system of four first-
order ordinary differential equations plus two algebraic equations for six unknowns. (For
simplicity, we omit surface loads.) Three of the unknowns are the saume as Taber's, namely
4, the angle a tangent to a meridian of the deformed reference surface makes with the
horizontal; x, a meridional bending strain; and ¢ = ', the derivative of the polar twist
with respeet to undeformed meridional are length, [Retssner (1968) earlier introduced the
two angles 7 and ¢ (calling them © und O) in a study of the helical inextensional bending
and torsion of incomplete shells of revolution.] The other three unknowns in our formulation
are a meridional and 4 hoop stretch, A, and A,, and a stress function, F. The latter is a
standard unknown in the theory of axishells—shells of revolution undergoing torsionless
axisymmetric deformation (Reissner, 1950 ; Libai and Simmonds, 1988).

If the strains are small enough to justify the introduction of a quadratic strain-encrgy
density, we may give the ficld equations a particularly simple and symmetric form by first
expressing the meridional and hoop stretehes in terms of £ and a second stress function,
G ;. and sccond. by dropping terms in the resulting equations similar to those we ignore
implicitly when we adopt a quadratic strain-energy density. These arguments are like those
used by Simmonds and Libui (1987) and Libai and Simmonds (1988) to simplify Reissner’s
axishell equations.

If lincarized, the field equations for  and F uncouple from those for  and G and the
well-known static-geometric duality of lincar theory manifests itself in the pairings

Bes F, —lrysina G, i
where

B

d—a 2)

i

is the angle of rotation of a deformed meridian,
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A detailed development of linear theories for elastically isotropic or anisotropic shells
of revolution suffering bending and torsion is given by Reissner and Wan (1969, 1971).

2. KINEMATICS OF DEFORMATION
Let

Fry=r(s)e,()+:(s)e.. 5, <5<s5.. 00K 2n {3)

te
.

denote the parametric representation of the reference surface of revolution. Here. s is arc
length along a meridian and (r.8.:) are circular cylindrical coordinates with assoctated
orthonormal base vectors {e,.e,.e.}. related in the usual way to a fixed right-handed
Cartesian reference frame Oxyz with associated orthonormal base vectors {e,.e,.e.}. In
particular,

e, =e.,cosf+e.sinf. e, = —e sinf+e cosd (4)

We assume that the loading and material properties of the shell are such that the
deformed reference surfacet has the representation

T ¥ = F($)8, (s, 0) + 3(s)e.. (5
Here (and for future reference),
& = (0+Y(s)). € =, (0+¢{)). (6a.b)
where  is one of our basic unknowns,
Associated with the parametric representation (3) of the reference surface of revolution
are the standard covariant surface base vectors
y. = s ) = r@)e () +2 (e, ya = r(s)e,(0), Q)
and the surface normal
n=txe,, (8)

where a subscript preceded by a comma denotes partial differentiation with respect to that
subscript, Because s is arc length along o meridian, we may set

cosz = r'{s), sinx=z(s). 9)

Thus, t and n are unit vectors.
Let
- F(s)e.(s,0) F(s)e.
+

N T A N G T
= cos #(s5)6,(s, ) +sin Z(s)e. (10)

denote a unit tangent to a meridian of .. (In general, t is not the deformed image of t.)
Then the covariant base vectors and unit normal of the deformed reference surface, &', are,
by (5) and (6),

+ Here, we follow Simmonds (1979) and Libai and Simmonds (1983) and take the posi;inn of the reference
surface of a shell, 7, and its deformed image. 7, to be density weighted averages of the initial and final three-
dimensional positions of the shell. Thus. # and .7 need not comprise the same particles.
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¥, = F(5)8,(5.0) +F(5) (5)8,(s, )+ (s)e.

= A ()5, 8) + T(s)é,(s5.0) {H
Yo = F(9)8:(5.8) = r()Au(s)es(5.0) (12)
it = 1(5.0) x &,(5,0) = —sin %(s)é,(s5. 0) +cos E(s)e.. (13)

Here. A, and A, are meridional and hoop stretches and I' is an in-surface shear strain.
Bending strains will be introduced presently as a natural consequence of the Principle
of Virtual Work.

3. STRETCH AND STRAIN COMPATIBILITY

Assuming sufficient smoothness, we must have ¥ o = ¥ o, or, by (6) and (10)-(12),
(rA,) = A.cos 4 (14)*
C=rAn). (15)

(Following the suggestion of a referee, we have indicated cach member of our final set of
ficld equations by an asterisk.)

4. FORCE AND MOMENT EQUILIBRIUM

By specializing the three-dimensional integral equations of force and moment equi-
librium to a shell-like volume, one may obtain exact two-dimensional integral equations
over a reference surfuce (Simmonds, 1979 Libai and Simmonds, 1983). 1 the stress
resultant and couple tensors in these integral equations are sufliciently smooth, as we shall
assume, then the divergence theorem may be applied to obtain differential equations of
cquilibrium. For the simultancous axisymmetrie bending and torsion of a shell of revolution,
free of surfuce loads, these equations take the form

(rNc),x + Nll,t) = 0 (16)

(ri\"].\),x + E\""H.(} +r?.x X Nc +‘5’_u X Nﬂ = 0' (‘7)

Here, rN, d0 and N, ds are, respectively, the forces acting across the deformed images of
the differential coordinate clements, r d0 and ds: rM, df? and M, ds are analogous couples.
We now take the dot product of (16) with §¥, the variation of the deformed position

in {5). and the dot product of (17) with dw a yet-to-be-defined unknown. Adding the
resulting equations and integrating by parts over .% to remove partial derivatives on the

stress resultants and couples, we arrive at the identity

EVW = IVW, (18)

EVW = 2n[r(N, 5§ + M, - don)3: (19)

is the external virtual work and
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S:
VW = ZKJ. [N, (0¥, =0 x¥,)+Na- (0= 0w x§,)+rM, S, + M, dw,]ds
5y

(20)
is the internal virtual work.
Now by (6) and (10)-(13),
0F, = oA, + &0 + (S +0y) xF,. ¥, = résdA,+ (dw+5y) x ¥ 4. (n
where
0y = e.0P(s) —&,(s. 0)3%(5) - dw 2

is a virtual transverse shear strain-twist vector (Libai and Simmonds, 1983, p. 314). The
reduced Kirchhoff Hypothesis is that the strain-energy density of the shell does not depend
on y. {The adjective “reduced” is used to distinguish this two-dimensional hypothesis from
the classical Kirchhoff Hypothesis in which the three-dimensional transverse shearing and
normal strains are assumed to vanish.) However, rather than wait until we have introduced
constitutive relations, we shall, equivalently. henceforth assume that dy = 0. It now follows
from (6b) and (22) that

dw = e dd— 3% +e.0f, dw, = ¢,0% (23

so that (20) reduces to

5,
IVIW = 2n J FNOA, + ST + NuSAy + MOk + Wot + MSko+ D.SL, + DydLy) ds,

5,

(24)
where
N,=N,'t, S=N,°&, Ny=N,& (25)
are stress resultants,
= —M, & W=M- 1 M, =M, -t (26)t
are stress couples,
D, =M, #, D,=M, i 7
are drilling couples,
kK= (FE—a), t=¢'sind, k, =r '(sind—sina), (28a-¢)
are bending strains and
L, =y cosd, L,=r""'(cosd—cosa) 29)

are drilling strains, The torsional bending strain, t, was introduced by Taber (1988). but in
a different way from here; x and &, are the same as in Reissner's (1950) theory of axishells.

By mecans of (15). (28), and (29), we have expressed all strains in terms of the four
kinematic unknowns, A,, Ay, 4, and y’. A complete sct of ficld equations emerges when
we adjoin stress—strain relations. However, before doing so, we reduce and simplify the
equilibrium cquations, (16) and (17), and the external virtual work, (19).

t 1 is a mnemonic for “wrenching”™ moment.
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5. FIRST INTEGRALS AND OTHER SIMPLIFICATIONS OF THE EQUILIBRIUM EQUATIONS

Noting (25)—(27), we now introduce the following component representations—and
alternatives—for the various vector stress resultants and couples:

N, = N,(5)t(s. 0) + S(5)&, (5. 8) + Q(s)ir(s, 6)
= H(5)&,(5, 0) + S(5)&y(s. ) + V(s)e. (30)

Ny = Ny (5)U(5. 0) + No(5)€,(s. 0) + Qu(s)A(s. 6)

= H,y(5)8,(5, 0) + N, (5)8,(s. 0) + Va(s)e. 3n
M = W(s)t(s, 0) + D,(s)a(s, 8) — M(s5)&,(s, 0) (32)
M, = M,()t(s, 0) + Du(s)(s, 0) — My, (5)&(s. 0). (33)

Inserting the second lines of (30) and (31) into (16) and noting (6). we obtain three scalar
equations which may be satisfied identically by setting

Ny=F—-GY’', Hy=—(G'+Fy’), rV =P, aconstant, (34a-<¢)

where 2P is the net (vertical) force in the z-direction acting on any scction s = constant
of the shell and

F=ril, G=rS. (354,b)
Turning to moment equilibrium, we insert the second lines of (30) and (31) along with
(32) and (33) into (17). Again noting (6) and using (34¢) and (35), we obtain the following
scalar equations in the directions of €,, €,, and e, respectively
rAYVy = AGsind—~TP+[r(D,sind— W cos @) —rMy’ — M, (36)
(rM)Y —(My+rWi)cos 2+ (Dy+rD ) sind+ A,(Pcosd— Fsing) =0 (37)
[r(Wsind+ D, cos D)) + (rAyy’ —=D)F+rA )G '+ A.Gcos d = 0. (38)
We satisfy (36) identically by using it to compute V,. To simplify (38), we use the
compatibility conditions, (14) and (15), whereby the F-term disappears while the G-terms
combine into a total derivative, yielding the first integral
r(Wsind+ D, cos a+A,G) = T, aconstant, 39
where 2rT is equal to the net torque about the z-axis, over any section s = constant,

By (5). (6), (12), (23), (30), (32). (34c), and (39). the external virtual work, (19).
reduces to

EVW = 2r[r(FSA, + M%) + P3:+ Toy13:. (40)

6. STRESS-STRAIN RELATIONS

We now assume that the shell is elastic and, as is customary, that there are no drilling
moments. That is, we assume that there exists a strain-energy per unit area of & of the
form
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V=1(A AT K K. T) (41)

such that the variation r}” equals the integrand on the right side of (24). By (24) and (40).
the Principle of Virtual Work. (18). now takes the more explicit form

[(FOA, + MOT) + PO+ Toy)Js:

v,
= f (FAOA, + VA 0A + F 0T+ b0k + 1, 0k, + 1 .00r ds. (42)
S

In obtaining the Euler equations implied by (42), we must recognize that JA,. dA..
and 6T are not independent. but must satisfy constraints implied by the compatibility
conditions. (14) and (15). We satisfy (15) by simply replacing I' by rA." wherever it
appears : we satisty (14) by means of a Lagrange multiplier which turns out to be F. That
is., we add to the right side of (42) the term

S,
J J‘ FI(rA,) — A, cos 7] ds. (43)

Finally, noting from (10) and (11) that & = A, sin 4, we rewrite one term in the external
virtual work as follows:

AN
(P35 = j P(sin Z0A, + A, cos 454) dv. (+44)
Y

We now substitute the right sides of (28) into the above-madified form of (42) and
integrate by parts to remove derivatives of variations. First sctting the coctlicient of 84 to
scro in Lhe interior and on the boundary of the shell, we obtain

(rb ) =V, +rxb dcos I+A(Fsind—LPcosd), s <5<y, (45)*
and
M=V, s=ux5.,5,, (46)
where
Y= (47)

I we rewrite (282) in the form of a first-order differential equation,
=24k 85 <5<, 48)*

then, by (15). (28b.c). and (47), the strain-energy density, ¥, given by (41), takes the
functional form

V= F(A.Apn & K. Y) (49)

and (45) becomes a first-order differential cquation (involving, in genceral, derivatives of all
the unknowns except F).

Next, we consider the cocflicient of 3A,. Assuming for simplicity that cither // (and
hence F) or 7 (and hence A,) is prescribed on the boundary of the shell, we obtain the
differential equation

Fr=Vy+rVe., si<s<s; (50)*

and boundary conditions
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F=F or Av=As $5=15..5 {(51)

where a hat () denotes a prescribed quantity.
Setting the coefficient of dF to zero vields. by (43), the compatibility condition, (14).
Setting the coefficient of 3y to zero in the interior yields an equation of the form
(...) = 0 which, if we integrate and note the term [To¥]3: on the left side of (42). implies
the algebraic relation

r(V.sini+rAg V) =T, (52)*
Our final Euler relation,
Fcosi+Psind=rb,. (53)*

is also an algebraic relation and follows from equating to zero the coefficient of JA,.
Comparing the equations of this section with those of Section 5, we have the stress-
strain relations

Ne=Va, No=V,y. S=Ve. M=V, My=V,., W=V (54

In summary. the final form of our ficld equations are the four first-order differential
cquitions, (14), (45), (48), and (50). plus the two algebraic relations (52) and (53). To solve
them, the strain-cnergy density, F, must be specified. For a neo-Hookean shell, we may use
the expression derived by Taber (1988, eqn 55) which, under the Kirchhoft hypothesis and
in our notation, takes the form

] R
Yal r- -
ACA; * 3

. h [(H- 3 ) 2y _‘,‘_,"’flf.+(|+ 3 ) G } (55)
12A7A; AN T AN AL ‘

where g is a shear modulus,

V= f‘;th{/\f +A5+

7. SIMPLIFICATIONS IMPLIED BY A QUADRATIC STRAIN-ENERGY DENSITY

If I' and the “engineering” meridional and hoop strains
FL=A~t and T,=A,-1 (56)

are sutliciently small, then the strain-energy density of an elastically isotropic shell, free of
initial stress, may be represented in the form (Koiter, 1960)

(57)

Here, Cand D are stretching and bending stiffnesses. v, and v, are Poisson ratios of stretching
and bending. R is a certain remainder (or error) term, and the underlines indicate terms
absent in shells of revolution undergoing torsionless, axisymmetric deformation (axishells).
It is conventional (but not necessary) to take
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Eh ER’®
v=v=v, C=-—— e (58)

i~ Py

where E is Young's modulus and # is the undeformed thickness of the shell, here assumed
constant. The associated stress—strain relations are, from (54) and (56).

N =C(I+v ). N, =Cl,+v). §S=1 -v)Cr (59)

and

M = D(k+v,ke). My = D(ky+wr). W =1{(1-v)Dr (60)

Solving (59) for strains in terms of stresses and introducing (34a), (35). and the
representation

rN, = Fcosd+ Psind (28]
which follows from (30). (34¢), and (35a), we have

rC, = A[Fcos 2+ Psind—v,r(F - Gy))

r0y = A[r(F = Gy)~v(Feos @+ Psin )], rT = 21 +v,)AG, {62a-¢)

where A is a stretching compliance, conventionally taken as

|
A= Lh’ (63)

Simmonds and Libai (1987) (see also Libai and Simmonds, 1988, Scction V.R) have
simplified Reissner’s (1972) equations for axishells by excluding terms that are of the same
order of magnitude as those that would have appeared had certain of the R-terms in (57)
been kept, such as those representing transverse shearing strains. Adding to eqns (40)
and (41) of Simmonds and Libai (1987) —which correspond to (37) or (45) and (14),
respectively —those terms coming from the underlined terms in (60) and (62), we obtain

DUy —r Psin /3—(1/4)(!:ﬁ}{;¢f sin 2(z+ )]+ Pcos(a+ )= Fsin(x+f) =0 (64)

and

A[(rF'y —r 'F—v,Gy]+cos x—cos (2 +ff) = 0, (65)
where i = 2 —2.
Two addition cquations relating ¥ and G follow from (15}, (28b), (35b), (52}, (57),
and (62¢) as
200+ v)AG = r'y (66)
and
[ =v) Dy sin® @+ ) +G] =T. (67)

Here, we have neglected strains compared to unity, consistent with ignoring the R-terms in
the expression for the strain-energy density. (57). Solving these two equations for G, we have

G = —Z: [ I+ o(ff-'-sr‘f" 1)] (68)
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We note that the second term in the brackets is negligible, except possibly near the axis of
revolution, so we shall neglect it. Inserting (66) and (68) into (64) and (65), we obtain the
final form of our simplified equations:

D[(rB) —r~ 'sin B]+ Pcos (2 +f)— Fsin(x+f)
—(L=v)D[(L+v)ATIF)r 'sin 2(x+5) =0 (69)

A[(rF’Y —r~'F]4cos x—cos (2 + ) = 2v,(1 +v,)(4T/r?)". (70)

8. CONCLUSIONS

Our equations can be extended in several obvious ways. First. surface loads can be
incorporated easily. Second, we can consider a polar orthotropic material in which the
thickness varies with undeformed meridional distance, s. And third, we can follow Reissner
(1968) and generalize the parametric equation for the deformed reference surface. (5). to
encompass helical deformations of incomplete shells of revolution. Such extensions would
complicate but not change the basic structure of our simplified equations of Section 6 for
large strains or Section 7 for small strains.
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