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Ahstract- We show that. under the Kirchhoffhypothesis. Taber's recent theory for the simultaneous
'I\isymmetric bending and torsion of shells of revolution undergoing large strains can be simplified
considerably. In general. his 3.' elJuations can be reduced to four lirst-order ordinary differential
equations and two algebraic equations for si'\ unknowns. For small strains. the equations can be
reduced further to tWI.l cI'uplcd ntlOlinear equations for the meridional angle of rotation and a stress
function. as in Reissner's theory of torshmless. a'\isymmetric deformation.

I. INTRODUCTION

Taoer (19XX) has devel(lped a theory of cin:umferenti'llly complete. ruoher-like (isotropic.
nonlinearly elastic) shells of revolution under static surface and end loads that arc inde­
pendent of the polar angle. Introducing one-dimensional extensionu!, hending, und trans­
verse sheuring strains. Taher derived a set of 33 field equutions for 33 unknowns. In the
present puper. we show thut under the reduced Kin:hholf hypothesis·--which assumes that
the two-dimensional trunsverse sheur strain-twist vector (Lihai .lIld Simmonds, 1983, p_
314) vanishes--the field equutions cun be reduced to a coupled system of four first­
order ordinury differentiul equations plus two algebraic equations for six unknowns. (For
simplicity, we omit surface loads.) Three of the unknowns arc the same as Taber's. namely
i, the angle a tangent to :1 meridian of the deformed rclcrence surf~lce makes with the
horizontal; h:, a meridional bending strain; und X = 'V, the derivative of the polar twist
with respect to undeformed meridional arc length. [Reissner (1968) earlier introduced the
two angles i and'" (calling them (IJ and 0) in a study of the helical inexlellsiunal bending
and torsion ofincomplcte shells of revolution.] The other three unknowns in our formulation
arc a meridional and a hoop stretch. A, and All, and a stress function, F. The latter is a
standard unknown in the theory of axishells-shells of revolution undergoing torsionless
axisymmetric deformation (Reissner, 1950; Libai and Simmonds. 1988).

If the stmins arc small enough to justify the introduction of a quadratic strain-energy
density, we may give the field equations a particularly simple and symmetric form by first
expressing the meridional and hoop stretches in terms of F and a second stress function.
G; and second. by dropping terms in the resulting equations similar to those we ignore
implicitly when we adopt a quadratic strain-energy density. These arguments arc like those
used by Simmonds and Libai (1987) .lOd Libai and Simmonds (1988) to simplify Reissner's
axishdl equ'ltions.

If linearized. the field equations for i and F uncouple from those for X and G and the
well-known static-geometric duality of linear theory manifests itself in the pairings

SAS 28: ....H

p...... F, - !1'1 sin IX ...... G.

where

P=i-oc

is the angle of rotation of a deformed meridian,
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(2)
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A detailed development of linear theories for elastically isotropic or anisotropic shells
of revolution suffering bending and torsion is given by Reissner and Wan (1969.1971).

1. KINEMATICS OF DEFOR\IATlON

Let

(3)

denote the parametric representation of the reference surface of revolution. Here. s is arc
length along a meridian and (r. e. =) are circular cylindrical coordinates with associated
orthonormal base vectors {c,.co.c:}. related in the usual way to a fixed right-handed
Cartesian reference frame Oxy= with associated orthonormal base vectors {c,.c"c:}. In
particular. .

c, = c, cos O+CI' sin O. CO = -c, sin O+c•. cos 0, (4)

We assume that the loading and material properties of the shell are such that the
deformed reference surfacet has the representation

:J': y = f(s)c,(s. 0) +:(s)c:.

Here (and for future rderence).

(5)

(6a. b)

where 1/1 is one of our basic unknowns.
Associated with the parametric representation (3) of the refen:nce surface of revolution

arc the standard covariant surface base vectors

Y., ;: t(s.O) = r'(s)c,(O) + ='(s)c,. Y./I = r(.I')c,,(lJ).

and the surl~lce normal

n = t XCII.

(7)

(8)

where a subscript preceded by a comma denotes partial ditlcrentiation with respect to that
subscript. Because .I' is arc length along a meridian. we may set

cos ~ ;: res). sin:x;: ='(s).

Thus. t and n are unit vectors.
Let

_ f"(s)c,(.I',O) :'(.I')c:
t;: --------- +----------==::.:::::.:

Jr~(.I') +='~(.I') Ji·~(.I') +='~(.I')

== cos i(s)c,(s. 0) +sin i(s)c:

(9)

(10)

dcnote a unit tanl::cnt to a meridian of .1'. (In general. t is not the deformed image of t.)
Then the covarian~t base vectors and unit normal of the deformed relcrcnce surface. .<}'. arc.
by (5) ,Ind (6),

t Ilcre, we follow Simmonds (1979) and Lihai .lnd Simmonds (1983) and take the position of the reference
surface of a shell. :1', and its deformed image. /i', to be density weighted averages of the initial and final three·
dimensional positi,'ns of the shell. Thus. .'1' and :i' need not comprise the same particles_



Tabe:r's nonlinc:ar thc:ory for axisymmetric bending and torsion of elastlc shdls 509

L = f'(s)e,(s. 9) + ;(s)t{J'(s)eH(s, 0) + ':'(s)e:

== A,(s)t(s. 0) + f(s)e,,(s. 0) (II)

ii = t(s.O) x e,,(s. OJ = -sin :i(s)er(s. 0) +cos :i(s)e:, (13)

Here. A, and A" are meridional and hoop stretches and r is an in-surface shear strain,
Bending strains will be introduced presently as a natural consequence of the Principle

of Virtual Work.

3. STRETCH AND STRAIN COMPATIBILITY

Assuming sufficient smoothness. we must have Y.,H = Y.H' or. by (6) and (10)-( 12).

(rA,,)' = A, cos i (14)*

(15)

(Following the suggestion of a referee. we have indie'lted each memher of our final set of
field equations hy an asterisk.)

4. FORCE AND MOMENT EQlJlUIIRIIJM

fly specializing the three-dimensional integral equations of force and moment equi­
librium to a shell-like volume, one may obtain exact two-dimension.1I integral equations
over a reference surface (Simmonds. 1979; Libai and Simmonds, 19X3). If the stress
resultant and couple lensors in these integral equ,ltions arc sul1kiently smooth. as we shall
assume. then the divergence theorem may be applied to obtain differential equations or
equilibrium. For the simultaneous axisymmetric bending and torsion ora shell or revolution.
free of surface loads. these equations take the form

(rNJ..,+ NII•t, = 0

(rMJ.., + 1\1/1./1 + ry., x N, + Y,II X Nil = O.

( 16)

( 17)

Here. rN, dO and Nt! ds arc. respectively. the forces acting across the deformed images of
the differential coordinate clements. r dO and ds; rM, dO and M/I ds arc analogolls couples,

We now take the dot product of (16) with J y. the variation of the deformed position
in (5), and the dot product of (17) with Jw a yet-to-be-dclined unknown. Adding the
resulting equations and integrating by parts over /I' to remove partial deriv'ltives on the
stress resultants and couples, we arrive at the identity

EVW== IVW,

where

EVW = 2n[r(N,' (5y +M,' i\w>H:

is the externalt'irfUalll'ork and

(18)

(19)
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(20)

is the internalt'irtual work,
Now by (6) and (10)-(13).

where

(22)

is a virtual transverse shear strain-twist vector (Libai and Simmonds. 1983. p. 314), The
reduced Kirchhoff' Hypothesis is that the strain-energy density of the shell does not depend
on y. (The adjective "reduced" is used to distinguish this two-dimensional hypothesis from
the classical Kirchhoff Hypothesis in which the three-dimensional transverse shearing and
normal strains are assumed to vanish,) However. rather than wait until we have introduced
constitutive relations. we shall. equivalently. henceforth assume that ()y = 0, It now follows
from (6b) and (22) that

(23)

so that (20) reduces to

(24)

where

are stress resultants.

M == -M,·co. W== M,·i. Mo == Mo·i.

are stress couples.

D, == M,·o. Do == Mo'n

are drilling couples.

,,== (~-(X)'. T == lj;' sin~. "II == r '(sin Ii-sin (X).

are bending strains and

L, == lj;' cos ~. Lo == ,- I (cos Ii - cos !X)

(25)

(26)t

(27)

(28a-e)

(29)

are drilling strains. The torsional bending strain. T. was introduced by Taber (1988). but in
a different way from here; " and "II are the same as in Reissner's (1950) theory of axishells.

By means of (15). (28). and (29), we have expressed all strains in terms of the four
kinematic unknowns. A,. Ao• Ii. and lj;', A complete set of field equations emerges when
we adjoin stress-strain relations. However. before doing so. we reduce and simplify the
equilibrium equations. (16) and (17). and the external virtual work. (19).

t W is a mnemonic for "wrenching" moment.
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5. FIRST INTEGRALS AND OTHER SIMPLIFICATIONS OF THE EQUILIBRIUM EQUATIONS

Noting (25)-(27), we now introduce the following component representations-and
alternatives-for the various vector stress resultants and couples:

N, = N,(s)t(s. fJ) +S(s)eH(s, fJ) + Q(s)ii(s, fJ)

= H(s)e,(s, fJ) +S(s)eu(s, fJ) + V(s)c:

NH = N~,(s)t(s. 0) +NH(s)eU(s, fJ) +Qu(s)ii(s, fJ)

= H o(s)e, (s, 0) +No (s)eu(s, fJ) + Vu(s)c:

M = W(s)t(s, 0) + D,(s)ii(s, fJ) - M(s)eH(s, fJ)

(30)

(31)

(32)

(33)

Inserting the second lines of (30) and (31) into (16) and noting (6), we obtain three scalar
equations which may be satisfied identically by setting

No = F' -Gt/J', Ho = -(G' +Ft/J'), rV = P, a constant, (34a~)

where 2TtP is the net (vertical) force in the :-direction acting on any section s = constant
of the shell and

F== rll. G == rS. (35a. b)

Turning to moment equilibrium, we insert the second lines of (30) and (31) along with
(32) and (33) into (17). Again noting (6) and using (34c) and (35), we obtain the following
scalar equations in the directions of c,. Co. and c:, respectively:

rAo Vo = A,G sin:i - rP+ [r(D, sin a- w cos a»)' -rMt/J' - Mo., (36)

(rM)' - (Mo+ rWt/J') cos :i + (Do + rD,t/J') sin Ii+ A,(P cos:i - F sin a) = 0 (37)

[r( W sin :i+ D, cos :i)]' + (rAut/J' - r)F+rAIJG' + A,G cos :i = O. (38)

We satisfy (36) identically by using it to compute VIJ' To simplify (38), we usc the
compatibility conditions, (14) and (15), whereby the F-term disappears while the G-terms
combine into a total derivative. yielding the first integral

r( W sin :i + D, cos :i + AuG) = T, a constant, (39)

where 2TtT is equal to the net torque about the :-axis, over any section s = constant.
By (5). (6). (12), (23), (30), (32), (34c), and (39). the external virtual work. (19).

reduces to

EVW = 2Tt[r(FJAu+ AfJ:i) + PJ=+ TJt/Jlk (40)

6. STRESS STRAIN RELATIONS

We now assume that the shell is elastic and, as is customary, that there arc no drilling
moments. That is, we assume that there exists a strain-energy per unit area of Y' of the
form
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v = HA" A". r. K. K". r) (~I)

such that the variation rV equals the integrand on the right side of (2~). By (2~) and (~O).

the Principle of Virtual Work. ( 18). now takes the more explicit form

(~2)

In obtaining the Euler equations implied by (42), we must recognize that <5A,. <5A,,,
and () r are not independent. but must satisfy constraints implied by the compatibility
conditions. (I~) and (15). We satisfy (15) by simply replacing r by "\,,IV wherever it
appears; we satisfy ( I~) by means of a Lagrange multiplier which turns out to be F. That
is. we add to the right side of (42) the term

() f' F[(rA,,)' - A.. cos x] ds. (~3)

Finally. noting from (10) and (II) that ;' = A, sin X. we rewrite one term in the e"\ternal
virtual work as follows:

[/"):l~.. = is. /'(sinx,)A, + A, ws xM) ds.
\ I

We now suostitute the right sides of (28) into the aoove-modilied form of (42) and
integrate hy parts to remove derivatives of variations. First setting the cocflicient of ,5:( to
lero in the interior and on the boundary of the shell. we obtain

(rI·,.)' = n'." + rxV.,) cos x+ A,(F sinx - /' cos i). .1', < .1 < s~ (45)*

and

Al = 1/.• , s = s"s~.

where

x == IV·

If we rewrite (28a) in the form of a first-order ditlcrential e4uation.

(~6)

(-l7)

(48)*

then. by (15). (28b.c). and (47). the strain-energy density. V, given by (41). lakes the
functional form

V = rIA"~ A". i, K, X) (4lJ)

and (45) hecomes a first-order differential equation (involving, in general. derivatives of all
the unknowns except F).

Next. we consider the coellicient of ,)A". Assuming for simplicity that either /I (and
hence F) or i (and hence I\,) is prescribed on the boundary of the shell, we obtain the
differential equation

(50)*

and boundary conditions
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(51 )

where a hat (') denotes a prescribed quantity.
Setting the coefficient of JF to zero yields. by (43). the compatibility condition, (14).
Setting the coefficient of Jt/J to zero in the interior yields an equation of the form

(...r = 0 which. if we integrate and note the term [TJt/Jl~; on the left side of (42). implies
the algebraic relation

Our final Euler relation.

Fcos i+ P sin i = rV.,\ .•

(52)*

(53)*

is also an algebraic relation and follows from equating to zero the coefficient of <51\,.
Comparing the equations of this section with those of Section 5, we have the stress­

strain relations

N, = V.h •• Nil = V.,\". S = V.f • M = V.~, AlII = V".' W = V.f • (54)

In sUllllllary. the final form of our field equations arc the four first-order differcntial
eljuations, (14). (45). (4Rl, and (50). plus the two algebraic relations (52) and (53). To solve
thel11. the strain-energy density. V, lllust be specified. ror a neo-Hookean shell. we may use
the expression derived by Taner (I tJXR. eqn 55) which, under the Kirchhoff hypothesis and
in our notation. takes the form

(55)

where Jl is a shear modulus.

7. SIMPLIFICATIONS IMI'L1ED BY A QUADRATIC STRAIN·ENERGY DENSITY

If r and the "cngineering" meridional and hoop strains

r.=I\,-1 and rn=A,/-1 (56)

are sullkiently small. then the strain-encrgy density of an elastically isotropic shell. free of
initial stress. may be represented in the form (Koiter. 1960)

(57)

Here. C and D are stretching and bending stitrnesses. v, and VI> are Poisson ratios of stretching
and bending. R is a certain remainder (or error) term, and the underlines indicate terms
absent in shells of revolution undergoing torsion less. axisymmetric deformation (axishclls).
It is conventional (but not necessary) to take
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(58)

where E is Young's modulus and h is the undeformed thickness of the shell, here assumed
constant. The associated stress-strain relations are, from (54) and (56),

(59)

and

(60)

Solving (59) for strains in terms of stresses and introducing (34a), (35), and the
representation

rN, = Fcos i+ P sin if.

which follows from (30), (3·k), and (35a), we have

rr, = A[Fcos j + P sin ,j - ~·.r(F' - GX))

r r" = A[r( F' - (IX) - v,(F cos i + r sin x) J, r r = 2( I f-.v,)AG,

where II is a stretching compliance, conventionally taken as

I
II::;;:; Ell'

(61)

(62a-c)

(63)

Simmonds and libai (1987) (see also Libai and Simmonds, 19XX, Section V.R) have
simplilil.:d Rdssm:r's (1972) equations for axishells by I.:xduding terms th;lt are of the same
ordl.:r of m;lgnillllh: as those that would havl.: appcared had certain of the R-terms in (57)
becn kept, such as those representing transverse shearing strains. Adding to eqns (40)
and (41) of Simmonds and Libai (1987)-which corrcspond to (37) or (45) and (14),
rcspcclivdy--those terms coming from the underlined terms in (60) and (62), we obtain

lJ[(r/n' - r I sin II - (1/4)(~=~b)~X= sin2(ox+ fJ)J + r cos (:x + fJ) - Fsin (:x + II) = 0 (64)

and

A[(rF'j' - r - IF- ~,GX] + cos ox -cos (ox + fJ) ::;;:; 0, (65)

where II ::;;:; x-:x.
Two addition equations relating X and G follow from (15), (28b), (35b), (52), (57),

<lOd (62c) as

(66)

(67)

Here, we have neglected strains compared to unity, consistent with ignoring the R-terms in
the expression for the strain-energy density, (57). Solving these two equations for G, we have

T[ (h" sin" i)JG=- 1+0 --,- .
r ,.

(68)
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We note that the second term in the brackets is negligible. except possibly near the axis of
revolution. so we shall neglect it. Inserting (66) and (68) into (64) and (65). we obtain the
final form of our simplified equations:

D[(rfl'r -r- I sin fJ] + P cos (7.+ fJ) - Fsin (7. + fJ)

- W -vb)D[(1 +v.)AT!r~rr-1sin 2(7.+fJ) = 0 (69)

8. CONCLUSIONS

Our equations can be extended in several obvious ways. First. surface loads can be
incorporated easily. Second. we can consider a polar orthotropic material in which the
thickness varies with undeformed meridional distance. s, And third. we can follow Reissner
(1968) and generalize the parametric equation for the deformed reference surface. (5). to
encompass helical deformations of incomplete shells of revolution. Such extensions would
complicate but not change the basic structure of our simplified equations of Section 6 for
large strains or Section 7 for small strains.
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